A Model for Resource Specification in Mobile Services

Hamid Mukhtar, Djamel Belaïd and Guy Bernard
Institut TELECOM/TELECOM & Management SudParis

3rd ACM International Workshop: SIPE 08
07 July 2008 @ Sorrento, Italy
Introduction & Problem Description
Motivation
Service Component Architecture (SCA)
Composite Capability/Preference Profile
Proposed Extension to CC/PP
Integration of SCA and CC/PP
Conclusions
The SOA introduced the **software-as-a-service** concept
- Applications built as consuming/providing services

SOA specifications are currently focused only on enterprise and business services
- Interfaces, granularity, heterogeneity, security, transaction etc.

Mobile services pose additional requirements to the service architecture
- Hardware capabilities/resources of devices
- Specific constraints posed by the user application

When creating mobile services, developers should be able to specify service/application requirements
- Specify these requirements both abstractly and concretely

Concrete: 1 MB of memory can be specified concretely

Abstract: to require some *input* mechanism
- Input can be concretized by keyboard, stylus or speech recognition
Motivation

- Developers should be able to specify resources abstractly
- Abstract resources mapped to concrete resources depending on certain policies, which can be done dynamically

An Example
- A chat application developed in Java
- Tested on Symbian platform with certain minimum amount of required memory
- Useful only if the device has an input mechanism
- Connect to the Internet using WiFi (due to QoS reasons)
- Log the communication and use Kerberos for authentication

We propose an approach
- Policy-based resource description by the developers
- Build on existing SOA specifications (SCA) and resource models (CC/PP)
SCA provides a programming model for building applications and systems based on SOA.

An SCA application (composite) is an assembly of heterogeneous components, which implement particular business functionality.

Allows to build distributed applications, which are technology-, protocol-, and implementation-agnostic.

Every SCA component relies on a common set of abstractions:
- services, references, properties, and bindings.
The architecture is described in SCDL (Service Component Description Language).

The Example Chat Application

```xml
<composite name="ChatApp">
  <service name="ChatService"/>
  <interface.java interface="ChatItf"/>
  <component name="ChatServiceComponent">
    <implementation.java class="services.ChatServiceImp"/>
    <reference name="Connection"/>
  </component>
</composite>
```

Figure adopted from SCA v1.00 specs (c) OSOA
Limitations of SCA

- Does not consider the resources required by a service or its implementations
- Greater flexibility, but it also affects the way various services are to be considered during binding
 - services shouldn't be tied to any implementation/reference
 - resource requirements should be satisfied
- Both the service providers and clients should express their resources related QoS requirements/specifications
- The interoperability between them will be satisfied only if the requirements are met
 - apart from matching their functional interfaces

Use a Resource Model

- Resources can be specified abstractly and concretely
- CC/PP seemed to be the best choice
 - Extensible, declarative, reusable, expressive, independent
Composite Capability/Preference Profile

- W3C standard for describing device capabilities and user preferences
 - a model providing core vocabulary
- Designed for small, wireless devices such as PDA's and smart-phones
- Defines a two-level hierarchy consisting of components, and their attributes, described in a profile
- A CC/PP profile is an XML document based on Resource Description Framework (RDF)
 - Enables an extensibility mechanism for CC/PP-based schemas

Extending CC/PP

- To meet our requirements
- Enrich the existing model with additional components/attributes
A Model for Resource Specification in Mobile Services

OMA CC/PP Specifications

Open Mobile Alliance UAPROF 2.0 Specification

- A CC/PP implementation

- WapCharacteristics
 - WapDeviceClass
 - WapVersion
 - WmlDecSize
 - WmlScriptLibraries
 - WmlScriptVersion
 - WmlVersion
 - WmlVersion
 - DrmConstraints

- BrowserUA
 - BookmarksSupported
 - JavaAppletsSupported
 - JavaScriptEnabled
 - BrowserName
 - BrowserVendor
 - DownloadableBrowse...
 - FrameCapable
 - HtmlVersion
 - JavaAppletsSupported
 - JavaScriptEnabled
 - JavaScriptVersion
 - PreferenceForFrames
 - PublicCapable
 - XhtmlVersion

- NetworkCharacteristics
 - SecuritySupport
 - SupportedUMTS
 - SupportedWiFi
 - NetworkAccess
 - SupportedBluetooth...
 - CurrentBearerService
 - SupportedBearer

- SoftwarePlatform
 - DownloadableSoftwareSupport
 - SymbolicUserInterface
 - JavaEnabled
 - OSName
 - AcceptDownloadableSoftware
 - AudioInputEncoder
 - CppAccept
 - CcppAccept:
 - CcppAccept-Encoding
 - CcppAccept
 - JVMVersion
 - Java11
 - OSName
 - OSVendor
 - VoiceInputEncoder
 - Javaplugin
 - CLIPharm

- HardwarePlatform
 - BluetoothProfile
 - BluetoothInterface
 - CPU
 - ColorCapable
 - ImageCapable
 - InputCharSet
 - Keyboard
 - NumberOfSoftKeys
 - Model
 - OutputCharSet
 - PixelAspectValue
 - PointingResolution
 - ScreenSize
 - StandardPointing
 - StandardSizeChar
 - SoundOutputCapable
 - TouchInputCapable
 - Vendor
 - VoiceInputCapable
Proposed Extension to CC/PP

Categorization and Refinement

A Model for Resource Specification in Mobile Services
Integration of SCA and CC/PP

- How to integrate CC/PP in SCA without violating the SCA specifications?
 - how to specify resources at two levels with existing SCDL?
- Use SCA Policy Framework specifications
 - Policy: describes some non-functional capability/constraint that can be applied to service components or their interactions
 - Implementation and interaction policies
 - version 1.0 discusses only the security and reliability policies
- Key concepts:
 - Intent allows to specify abstract QoS capabilities or requirements independent of their concrete realization
 - Profile allows the SCA developer to express collections of abstract QoS intents
 - Policy Set provides realization of concrete policies
CC/PP As Policy Language

- No policy language is mandated by the SCA Policy Framework
- How a policy is interpreted depends on how the policy is defined within the domain
- We can also use CC/PP as a policy language
- Define the notions of Intents, Profiles and Policy Sets
 - Intents and Profiles for specifying abstract resource requirements
 - Policy Sets for concrete resource specification
- They are matched using the same algorithm as defined in the Policy Framework specifications
 - In brief: their intersection determines the set of policies used
Abstract Resource Specification - Example

Consider the Chat Application

```xml
<composite name="ChatApp">
  <service name="ChatService" requires="Hardware.Input"/>
  <interface.java interface="ChatItf"/>
  <component name="ChatServiceComponent">
    <profile intents="logging sec.authentication/kerberos"/>
    <implementation.java class="services.ChatServiceImp" policySet="SymbianJava"/>
    <reference name="Connection" requires="Network.SupportedWiFi"/>
  </component>
</composite>
```

- **Hardware.Input** specifies that in order for the client to use it, the Input resource from the Hardware category must be available
 - abstract specification: does not specify the type of the input character set or the type of keyboard
- The **Connection** reference specifies **Network.WiFiSupported**, requiring that the component offering Connection service must support WiFi
Concrete Resource Specification

- Use the PolicySet element for concrete resource specification
- A PolicySet corresponds to an intent(s)
 - It is a (sub-)profile of CC/PP

The SymbianJava Policy Set

```xml
<policySet name="SymbianJavaWithHighMemory" provides="SymbianJava"
appliesTo="implementation.java">
  <ccpp:ResourceProfile xmlns:ccpp="http://example.com">
    <SoftwarePlatform JavaEnabled="true" OSName="Symbian">
      <Java Platform="CDC" OptionalPackages="VirtualKB"/>
      <Memory freeMemory="256"/>
    </SoftwarePlatform>
  </ResourceProfile>
</policySet>
```

- @provides specifies the corresponding abstract policy
- @appliesTo specifies the affected SCA element
Conclusions

- SOA: specifications aimed at enterprises
- Currently not adequate for mobile services
 - Additional hardware/software requirements
- SCA: inherits the same problems
- We proposed resource model for SCA
- Our contribution was twofold:
 - extension of CC/PP: categorization and refinement (abstract/concrete resource)
 - integrate CC/PP into SCA as a policy language
 - Preserving the existing notions of the SCA Policy Framework
Thank you

Questions?
<?xml version="1.0" encoding="ASCII"?>
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" targetNamespace="http://foo.com"
 name="#MyValueComposite#
 <service name="#MyValueService" promote="#MyValueServiceComponent#
 <interface.java interface="services.myvalue.MyValueService"/>
 <binding.ws port="http://www.myvalue.org/MyValueService#
 wsdl.endpoint(MyValueService/MyValueServiceSOAP)"/>
 </service>
 <component name="#MyValueServiceComponent#
 <implementation.java class="services.myvalue.MyValueServiceImpl"/>
 <property name="currency">EURO</property>
 <reference name="#customerService"/>
 <reference name="#StockQuoteService"/>
 </component>
 <reference name="#CustomerService" promote="#MyValueServiceComponent/customerService#
 <interface.java interface="services.customer.CustomerService"/>
 <binding.sca/>
 </reference>
 <reference name="#StockQuoteService" promote="#MyValueServiceComponent/StockQuoteService">
 <interface.java interface="services.stockquote.StockQuoteService"/>
 <binding.ws port="http://www.quote.org/StockService#wsdl.endpoint(…)"/>
 </reference>
</composite>

Example taken from SCA v1.00 specs (c) OSOA